반응형

인공지능 640

딥러닝 기초 , rogistic regression, 파라미터, 비용 함수, 학

classification은 discrete한 부류 k중 n개를 선택하는 문제 binary = 둘 중 하나 multi class = 세 개 이상 중 1개 multi label = 두 개 이상 중 1개 이상 one class = k=1, n=1 지도학습,P(y|x) x가 주어졌을 때 y의 확률 가설 집합 Hypothesis set = decision boundary 이 것을 잘 찾아야 잘 분류한다. 확률을 근사하는 모델을 만들기 위해 모델은 0~ 1의 범위를 가지는 출력을 해야 한다=> sigmoid 사용 0과 1로 분류해준다. 기본적인 식들은 이미 이전 글에 다 작성해 놨기 때문에 그건 링크로 남겨놓겠다. 2023.12.13 - [인공지능/공부] - 인공지능 중간고사 개념 정리 음 깔끔하게 정리해 놓은 ..

자연어 처리 시작, 인공지능에 필요한 수학 개념

챕터는 4가지로 1. 머신러닝 2. 딥러닝 3. 텍스트 분류 4. 언어 모델 이다. 1,2는 빠르게 넘어가고 3,4 에서 확실하게 하고 넘어가면 괜찮을 듯 하다. https://separate-darkness-400.notion.site/6ccceffafe2f41edbc9f4ac2940c7388 초격차 패키지 : 자연어 처리 트렌드 정리 | Built with Notion Built with Notion, the all-in-one connected workspace with publishing capabilities. separate-darkness-400.notion.site 이런 것도 정리해서 올려주시네요 좋다... 머신러닝이 비효율적인 예 - 단순 계산기, 시간 계싼, 수수료 계싼 등등 이미 최적..

인공지능 VGG, Super-Resolution

VGG의 feature map의 크기이다. 큰 필터를 안 쓰는 이유는 밑에서 보여주겠다. 7*7을 한번 하나 3*3을 3번하나 관여영역(receptive field)는 같지만 파라미터의 수는 3*3이 훨씬 적다. 이러한 이유로 VGG에서도 3*3 filter를 여러번 사용하였다. skip connection은 gradient의 소실때문에 생겨났다. 정보의 손실을 손실을 줄여주고, gadient 소실 또한 줄여준다. Super-Resolution 영상처리에서 많이 사용되는 기법이다. 이전에도 사용했던 skip Connection을 통해 loss 손실을 방지하고, 이전에 무엇이 있었는지(공간정보, 상세정보)를 전달해준다. skip connection을 통해 전달받은 max값의 위치를 통해 decoder에서 ..

인공지능/공부 2023.12.17

인공지능 Overfitting, Convolution, CNN

Overfitting overfitting은 traning data에 과도하게 optimized 되어 training data만 예측을 잘 하고, test data에는 오히려 낮은 점수를 보이는 것이다. 그래서 우린 데이터를 나누기로 결정한다. 데이터 불균형이 있는경우 (ex 100 10 100 -> 100 100 100)우린 데이터를 돌리기, 좌우대칭, 자르기, 밝기 변동 등을 활용해 데이터를 늘릴 수 있다. 네트워크가 너무 특정화되거나 커지면 오버피팅이 발생한다. 또한 weight가 너무 특화되거나 너무 큰 경우 발생한다. weight decay는 가중치가 커지지 않도록 방지하는 기술이다. 이 것은 하이퍼 파라미터로 커질수록 제제하는 강도도 커진다. 가중치가 너무 커지는 것을 방지하여 오버피팅을 피하..

인공지능/공부 2023.12.16

인공지능 Initialization, Regularization, Transfer Learning

Initialization 빠르게, 그리고 global minimun을 찾기 위해 Initialization은 중요하다. 위 사진만 봐도 금방 끝날 학습은 바로 보인다. 이전에도 나온 적 있는 그림이다. backpropagation을 하면서 gradient가 소실되는 것이다. vanishing gradient의 원인인 sigmoid와 tanh의 미분 브래프 이다. sigmoid는 미분하면 최대가 0.3이고, tanh는 1이고, 둘 다 양끝은 0이기 때문에 반복하다 보면 기울기 소실이 발생하는 것이다. 그리하여 나온 것이 ReLU이다. 그래도 여기서도 0이하의 값들이 소실되는 문제가 발생한다.(dying ReLU) 기울기 폭주는 너무 큰 기울기 값이 들어갔을 때 발생한다. 이것은 학습이 불안정해 지도록 만..

인공지능/공부 2023.12.16

인공지능 backpropagation, optimization- 개념

backpropagation backpropagation은 대부분의 인공지능의 파라미터 업데이트 방식이다. 우린 경사하강법을 통해 loss를 최소화 시키는 방향으로 학습한다. 기본적인 gradient 계산 방법이다. 이제 activation funcion(sigmoid, ReLU)와 여러 layer가 있는 NN에선 위와 같은 방식으로 backpropagation이 진행된다. 여기선 activation이 identity이기 때문에 미분하면 1이 나왔다. 여기선 첫번째 레이어의 파라미터를 구할 수 있게 된다. 그럼 저렇게 구한 미분값을 통해 학습률을 곱해서 원래의 파라미터에 빼게 된다. 이제 이러한 backpropagation에 여러 요소들을 추가하여 만든 optimization을 보겠따. optimizat..

인공지능/공부 2023.12.16

시계열 데이터(주가, imu data) 예측 인공지능 - RNN, LSTM

RNN은 시간에 따라 변화하는 데이터를 얘측할 때 사용된다. stationary( 변화없는 )데이터 NON - stationary 데이터 둘 중에 무엇이든 이러한 데이터들은 이전의 값들이 필요하다. 그러나 CNN, FCN을 사용하면 이전 값들이 그냥 소멸되게 된다. 위 사진이 RNN에 대한 기본 원리 이다. 이렇게 RNN이 들어가면 t1 -> t n 까지 모든 결과가 모든 input들을 포함하게 된다. 위의 사지을 보면 확실히 뒤에 있는 부분은 미분이 많이 들어가서 gradient 소실이 크게 보인다. 그리하여 vanish나 explode를 막기 위해 LSTM을 사용하게 되었다. LSTM Long Short Term Memory LSTM을 이해하려면 gate 구조를 이해해야 된다. gate구조는 open..

인공지능/공부 2023.12.15

생성형 인공지능 GAN 개념 - autoencoder의 업그레이드 버전

GAN = Generative Adversarial Networks GAN은 이미 실습을 한번 했었다. 아래 포스팅을 통해 한번 확인할 수 있다. 2023.12.07 - [인공지능/공부] - TensorFlow - 생성형 인공지능 GAN TensorFlow - 생성형 인공지능 GAN 여기에 작성하진 않았지만 인코딩 엔코딩으로 모델을 생성하는 것에서 발전된 모델이다. 생성하는 모델이 있고, 그 것을 판단하는 모델이 있다. 생성한 모델에서 나온 것은 판단하는 모델에서 yoonschallenge.tistory.com 여기선 descriminative model(판단 모델) 과 generative model(생성 모델) 두개를 사용한다. 생성 데이터와 실제 데이터의 분포는 같아야 한다. 즉 쉽게 말하면 실제 데..

인공지능/공부 2023.12.15

물체의 위치까지 구분하는 인공지능 -segmentation, odject detection

여태까지 CNN으로 물체가 있다, 없다 정도만 알았다면 이번에 해볼 것은 어디 위치에 물체가 있는지 알려주는 segmentation이다. classification은 전체 input에 대해 오직 한개의 결과만 나오고, 한가지 class만 찾을 수 있다. segmentation은 픽셀 단위로 그 위치에 무엇이 있는지 알려준다. 그러므로 학습시킬 때 정답도 픽셀단위로 무엇이다 라벨링해야해서 손이 많이 간다. 여기선 DENSE layer를 사용하지 않고, convolution을 통한 down sampling, up sampling을 사용한다. 그리고 결과는 클래스 개수 만큼 채널이 나오고 원 핫 인코딩 된다. 이렇게 진행하면 어디에 무엇이 있는지 위치정보가 손실되게 된다. 그 위치 정보를 주기 위해 연결을 한..

인공지능/공부 2023.12.15

생성형 인공지능 Autoencoder - 개념

여태까지 FCN, CNN, CAM 모두 supervised learning였다. 즉 지도학습으로 input(data)와 정답(label)이 주어지는 학습이었다. 그러나 오늘 다룰 Autoencoder는 label이 없는 즉 정답이 input인 unsupervised learning이다. 나중에 나오겠지만 차원을 축소시켜 피쳐의 개수를 줄이고, 정보의 loss는 최대한 줄인다. 우린 encoder(z = f(x))와 decoder(x = g(z))로 나눌 수 있따. ( x = g(f(x))) 로스는 결과와 입력값의 차이를 제곱하는 mse와 비슷한 성격을 가지고 있다. latent space를 그래프로 표시하면 위와 같다. 여기서 점이 없는 부분을 decoder로 돌리면 없는 data를 생산할 수 있다. 그..

인공지능/공부 2023.12.14
728x90
728x90