Multi-Head Attention은 Transformer 아키텍처에서 사용되는 핵심 기술 중 하나입니다. 이 메커니즘은 문장이나 문서에서 중요한 정보를 더 잘 포착하기 위해, 단일 Attention 메커니즘을 여러 번 병렬로 실행하는 아이디어를 기반으로 합니다. 각각의 "Head"는 동일한 입력 데이터에 대해 서로 다른 방식으로 Attention을 계산합니다. 이렇게 함으로써, 모델은 다양한 서브스페이스(subspaces)에서 정보를 포착하고, 더 풍부한 문맥 정보를 학습할 수 있게 됩니다. Multi-Head Attention의 작동 원리 Transformer 모델에서, 입력 데이터는 주로 문장의 각 단어를 나타내는 벡터로 구성됩니다. Multi-Head Attention 메커니즘은 이 입력 데이터..