반응형

2024/11/28 4

Sparse Autoencoder를 통한 LLM의 Bias 줄이기 - 성에 따른 직업 3

2024.11.05 - [인공지능/XAI] - Sparse Autoencoder를 통한 LLM의 Bias 줄이기 - 성에 따른 직업 2 이번에는 SAE의 Feature에서 COS 유사도를 구하는 것이 아니라 그 이후의 레이어에서 확인해 보도록 하겠습니다. JobGender DominanceFemale PercentageCosine Similarity with WomanCosine Similarity with Manskincare specialistFemale98.20.6511860.556518kindergarten teacherFemale96.80.6494910.514379childcare workerFemale94.60.716210.519848secretaryFemale92.50.5833850.5458..

인공지능/XAI 2024.11.28

AgentTuning: Enabling Generalized Agent Abilities for LLMs - 논문 리뷰

https://arxiv.org/abs/2310.12823 AgentTuning: Enabling Generalized Agent Abilities for LLMsOpen large language models (LLMs) with great performance in various tasks have significantly advanced the development of LLMs. However, they are far inferior to commercial models such as ChatGPT and GPT-4 when acting as agents to tackle complex tasks in tharxiv.orgAgent Instruction dataset을 통해서 사고 과정을 학습하고..

JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language Models - 논문 리뷰

https://arxiv.org/abs/2311.05997 JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language ModelsAchieving human-like planning and control with multimodal observations in an open world is a key milestone for more functional generalist agents. Existing approaches can handle certain long-horizon tasks in an open world. However, they still struggle whenarxiv.orgJARVIS-1은 멀티모달..

Agent-Pro와 GITM 비교

Agent-Pro2024.11.27 - [인공지능/논문 리뷰 or 진행] - Agent-Pro: Learning to Evolve via Policy-Level Reflection and Optimization - 논문 리뷰 GITM2024.11.26 - [인공지능/논문 리뷰 or 진행] - Ghost in the Minecraft: Generally Capable Agents for Open-World Environments via Large Language Models with Text-based Knowledge and Memory - 논문 리뷰Agent-Pro와 GITM은 각각 특정 환경에서의 AI 에이전트 학습 및 적응을 목표로 하지만, 접근 방식과 적용 범위에서 차이를 보인다.Agent-Pro..

인공지능/Agent 2024.11.28
728x90
728x90