반응형

rnn 4

자연어 처리 복습 1 - transformer, token, attention

기본적인 딥러닝은 이 전에 작성한 글에서 확인하면 됩니다.2024.08.25 - [인공지능/공부] - 딥러닝 복습 1 - Linear Reagression, Logistic regression,Neural Network 딥러닝 복습 1 - Linear Reagression, Logistic regression,Neural NetworkLinear Regression 선형 회귀로 지도학습(Supervised Learning)을 통해 정답을 학습해 입력에 대한 예측을 출력ex) 집값 예측, 키에 따른 몸무게 예측, 주식 등등..Cost function예측 값h(x)과 정답 값(y)에 대한yoonschallenge.tistory.com2024.08.25 - [인공지능/공부] - 딥러닝 복습 2 - Regula..

Chat GPT 통한 자연어 처리 중간고사 OX, 빈칸 퀴즈 문제

너무 말도 안되는 문제들은 다 빼버렸습니다... 빈칸 문제 NLP는 ____, 기계학습, 언어학, 사회과학/인문학과 같은 다양한 학문이 융합된 분야입니다. 정답: 인공지능 문장 "One morning I shot an elephant in my pajamas"에서 "shot"는 ____의 문제를 예시로 들 수 있습니다. 정답: 모호성 NLP의 주요 작업 중 하나는 ___인식이며, 이는 텍스트에서 특정 정보를 식별하는 작업입니다. 정답: 개체명 텍스트 분석, 음성 인식, 대화 번역은 모두 NLP에서 ____를 위한 대표적인 예입니다. 정답: 표현 OX 문제 NLP에서 "processing as representation"은 언어를 컴퓨터와의 상호작용을 위해 전달하는 과정을 말한다. (O/X) 정답: O "..

자연어 처리 중간 정리 1

2강 - Text mining 자연어 처리 - 사람의 언어를 컴퓨터가 이해할 수 있는 체계인 숫자로 변환하여 번역, 감성분석, 정보 요약 등 다양한 TASK를 처리하는 것 컴퓨터가 이해할 수 있는 체계로의 변환 == encoding (one hot encoding) -> embedding (vector representation) 근데 이게 언어의 특성 때문에 어렵다! 1. 동음 이의어 2. 사회적으로 공유되는 정보, 지식, 경험들 3. 모호성 POS - 품사 (명사, 형용사, 동사..) Named entities - 인물, 지역, 나라... Syntax - 문법(의존 관계, 수식..) 3강 - word embedding 이전에는 원 핫 인코딩을 통해 단순히 단어 수의 차원을 통해 인코딩하여 sparse..

시계열 데이터(주가, imu data) 예측 인공지능 - RNN, LSTM

RNN은 시간에 따라 변화하는 데이터를 얘측할 때 사용된다. stationary( 변화없는 )데이터 NON - stationary 데이터 둘 중에 무엇이든 이러한 데이터들은 이전의 값들이 필요하다. 그러나 CNN, FCN을 사용하면 이전 값들이 그냥 소멸되게 된다. 위 사진이 RNN에 대한 기본 원리 이다. 이렇게 RNN이 들어가면 t1 -> t n 까지 모든 결과가 모든 input들을 포함하게 된다. 위의 사지을 보면 확실히 뒤에 있는 부분은 미분이 많이 들어가서 gradient 소실이 크게 보인다. 그리하여 vanish나 explode를 막기 위해 LSTM을 사용하게 되었다. LSTM Long Short Term Memory LSTM을 이해하려면 gate 구조를 이해해야 된다. gate구조는 open..

인공지능/공부 2023.12.15
728x90
728x90